PRINCETON PLASMA PHYSICS LABORATORY THEORY PROGRAM PLANS

BUDGET PLANNING MEETING

W. M. TANG

Germantown, Maryland 6 APRIL 2000

PPPL THEORY PROGRAM Supports Goals Emphasized by FESAC

- Advance fundamental understanding of plasmas through analytical and numerical studies
- Help develop/optimize *innovative confinement configurations* and interpret initial experimental results with advanced theory/computational tools
- Collaborate on the analysis and planning of experiments for high-performance plasmas
- Support the development of enabling technologies
- Provide new theory/computational tools to aid development of efficient ion beam (*IFE*) systems

PPPL THEORY PROGRAM Has Well-Defined Target & Approach

• TARGET --- RELIABLE PREDICTIONS OF PROPERTIES OF FUSION PLASMAS

 Scientific Challenge: Understanding of complex physics phenomena impacting plasma performance & Integration of such knowledge into predictive models that prove superior to empirical scaling

• APPROACH:

- Planning and interpretation of experiments on existing facilities; design of new facilities; cross-cuts to other areas of science (shorter-term impact)
- Develop innovative new tools for analyzing wider range of phenomena with greater accuracy (medium-term impact)
- Generate seminal concepts advancing basic physics as well as confinement systems (longer-term impact)

PPPL THEORY PROGRAM

Emphasizes Accountability & Partnerships in Advancing Plasma Science

ACCOUNTABILITY

- Strong track record for producing seminal theories & reliable codes
- Well-motivated goals with deliverables & associated time-lines
- Steering Committee to enhance productivity & communication
 - IFE & Non-MFE Plasma Science (Davidson); MHD (Jardin); Transport (Hahm); Waves/Energetic Particles (Cheng); Non-Axisym. Systems (Reiman); Laser-Plasma Interactions (Valeo)

PARTNERSHIPS

- With theorists and theory groups, nationally & internationally
- With experimentalists and experimental groups, nationally & internationally
- With advanced scientific computing community
- With technology development

PPPL THEORY PROGRAM Addresses a Wide Range of Scientific Areas

- Scientific Objectives have been identified together with expected deliverables over next two years
 - Consistent with Scientific Challenges highlighted in FESAC Report on Priorities and Balance (8/99)
- Advanced Scientific Computing plays key role in all areas of research:
 - MACROSCOPIC STABILITY
 - TURBULENCE & TRANSPORT
 - WAVE-PARTICLE INTERACTIONS (Energetic Particles)
 - MULTI-PHASE INTERFACES (Boundary Physics)
 - NON-FUSION PLASMA SCIENCE (IFE)
- Illustrative Roadmaps (examples of targeted deliverables & associated time-lines)

MHD Simulations and Applications

3D-Resistive/Kinetic MHD

Predictive Capabilities for Multi-Phase Interfaces

PPPL IFE THEORY RESEARCH

- PPPL Theory plays key role in **Heavy Ion Fusion Virtual National Laboratory** (HIF-VNL) together with LBNL and LLNL.
 - lead positions in the HIF-VNL including <u>Deputy Director</u>
 (R. Davidson) and <u>Deputy Head of Theory and Modeling</u>
 (W. Lee)
- Technical Focus of PPPL Collaboration includes:
 - Advanced analytical and numerical modeling of intense beam propagation and beam-plasma interaction.
 - Development and application of RF techniques for preionized plasma formation.
 - Feasibility study of negative-ion-based heavy ion neutral beam driver.

Some Examples of PPPL Theory Collaborations

- High-impact results from collaborative applications of state-of-art global GK code to zonal flow turbulence suppression studies [P. Diamond (*UCSD*), L. Chen (*UCI*)]
- Collaborative development & applications of 3D nonlinear resistive MHD code (M3D) [H. Strauss (NYU), L. Sugyama (MIT)]
- Collaborative development of RWM analysis capability for DIII-D [M. Chance @ *GA* for one year]
- Highly productive collaborations on international facilities (*JET*, *JT60U*, *LHD*, *ASDEX*, ..) addressing Turbulent Transport (Rewoldt, Beer); MHD (Manickam, Monticello); Energetic Particles (Cheng, Gorelenkov, White); Boundary Physics (Stotler)

PPPL THEORY PROGRAM Has Strong Ties to Non-Fusion Plasma Science and to Academic Community

- NON-MFE RESEARCH including: Space and Solar Physics, Laser-Plasma Systems,
- INDUSTRIAL APPLICATIONS including: Plasma Display Panels, Plasma Thrusters, Plasma Processing, Textile Studies,
- EDUCATION including: major Graduate Program/Postdocs/Visiting Scientists -- impact of distinguished graduates/post-docs on community
 - Linkages with Princeton U. Main Campus e.g., <u>Computer Science Dept. partnerships in</u> Visualization & Graduate Education (NSF)

TARGETS of PPPL THEORY PROGRAM

MHD (examples)

- Parallelized M3D (parM3D) capable of utilizing large distributed memory MPP's @ NERSC (FY'01-02)
- Existence of Magnetic Surfaces in 3D Configurations via systematic applications/comparisons of VMEC, M3D, and PIES (FY'01)
- Develop non-inductive current build-up strategies for minimizing pulse length requirements (CMOD, NSTX) via Axisymmetric Modeling of Current Drive and Current Profile Control (FY'01)
- Feedback Stabilization Scenario-development for RWM (DIII-D) (FY'01)

TARGETS of PPPL THEORY PROGRAM

TRANSPORT (examples)

- Neoclassical Ion Transport and Bootstrap Current Properties in ST's and 3D (non-axisymmetric) Systems (FY'01)
- Object-oriented version of state-of-art codes such as GTC and ORBIT for community collaborations (FY'01)
- Applications of linear GK & NL GF simulations with new capabilities (magnetic perturbations & equilibrium ExB shear) to interpretation of fluctuation measurements from JT60U, JET, DIII-D, and C-MOD (FY'01)
- Influence of Trapped-Electron Dynamics in global 3D GK analysis of Tokamak Microturbulence (FY'02)

TARGETS of PPPL THEORY PROGRAM

- WAVES/ENERGETIC PARTICLES (examples)
- Develop and apply Energetic Particle (e.g., TAE) Analysis for experimental planning and interpretation on NSTX, FIRE (FY'01-02)
- Assessment of TAE Stability for N-NBI Experiments with plasma flow on JT60U (FY'01)
- Analysis of Fishbone Modes & Sawtooth Stabilization on ASDEX (FY'01)
- BOUNDARY PHYSICS (examples)
- Turbulence imaging for SOL studies on NSTX in collaboration with LLNL (FY'01-02)
- Application of Coupled DEGAS2-UEDGE to liquid lithium experiments on CDX-U (FY'01)

Opportunities in Advanced Scientific Computing

- In response to OFES, PPPL has played a lead role in successfully establishing the *Plasma Science Advanced Computing Initiative (PSACI)*
 - Plasma Science Advanced Computing White Paper very well received by DOE Headquarters
 - Pilot Programs in Turbulent Transport and MHD Simulations received excellent peer reviews & were launched in FY'00
 - Active Program Advisory Committee (with distinguished members from outside & within FES) have provided excellent advice/guidance
- New DOE Office of Science Initiative for "Scientific Discovery through Advanced Computing" has replaced SSI ---- FES has excellent opportunity to be prominent member of this broader scientific portfolio with access to significant new resources in SDAC program

PPPL Theory Department Budget (\$M)

	FY 2 0 0 0	FY 2001		FY2002	
		Baseline	Incr.	Baseline	Inc r.
Toka mak Theory	2.32	2.33		2.33	0.24
Alternate Theory	1.61	1.58		1.58	0.09
FRCTheory	0.20		0.20		0.20
Advanced Scientific Computing	1.27	1.07	0.80	1.07	0.80
Computation Physics	0.39	0.39		0.39	
National Transport Cod e	0.11	0.11		0.11	
Origin 2000 System Computing Support	0.10	0.10		0.10	
Software Standardization and Sharing		0.08		0.08	
Predictive TRANSP			0.13		0.14
Total Theory	5.99	5.66	1.13	5.66	1.47

$PPPL\ Theory\ Department\ Budget\ (Physics\ FTEs)$

	FY 2000	FY 2 0 0 1		FY 2002	
		Baseline	Incr.	Baseline	Inc r.
Toka mak Theory	8.5	7.5		6.6	1.2
Alternate Theory	7.8	7.0		6.3	0.5
FRCTheory	0.3		0.3		0.3
Advanced Scientific Computing	3.3	2.0	2.1	2.0	1.9
Computation Physics	0.3	0.3		0.3	
National Transport Cod e					
Origin 2000 System Computing Support					
Software Standardization and Sharing					
Predictive TRANSP					
Total Theory	20.2	16.8	2.4	15.2	3.9

$PPPL\ Theory\ Department\ Budget\ (FTEs)$

	FY 2000	FY 2001		FY 2002	
		Baseline	Incr.	Baseline	Incr.
Toka mak Theory	15.5	11.5		10.6	1.2
Alternate Theory	7.8	7.0		6.3	0.5
FRCTheory	0.3		0.3		0.3
Advanced Scientific Computing	5.4	3.7	2.4	3.2	2.2
Computation Physics	1.6	1.4		1.2	
National Transport Cod e	0.5	0.5		0.4	
Origin 2000 System Computing Support	0.4	0.4		0.4	
Software Standardization and Sharing		0.3		0.3	
Pre dic tive TRANSP			0.1		0.1
Total Theory (with some support for CPPPG)	31.5	24.8	2.8	22.4	4.3

CONCLUSIONS

- PPPL Theory Program is key National/International Resource for DOE Fusion Energy Science Program
 - highly desired for many external collaborations
- PPPL Theory Program combines:
 - *accountable progress* on many of most important, scientifically challenging problems facing FES research
 - *strong partnerships* with universities, laboratories, & industry
 - long-standing commitment to academic/educational mission of DOE FES Program

